Fluid-Filled Soft-Bodied Amoeboid Robot Inspired by Plasmodium of True Slime Mold

نویسندگان

  • Takuya Umedachi
  • Ryo Idei
  • Toshiyuki Nakagaki
  • Ryo Kobayashi
  • Akio Ishiguro
چکیده

This paper presents a fluid-filled soft-bodied amoeboid robot inspired by plasmodium of true slime mold. The significant features of this robot are twofold: (1) the robot has fluid circuit (i.e., cylinders and nylon tubes filled with fluid) and truly soft and deformable body stemming from Real-time Tunable Springs (RTSs), the former seals protoplasm to induce global physical interaction between the body parts and the latter is used for elastic actuators; and (2) a fully decentralized control using coupled oscillators with completely local sensory feedback mechanism is realized by exploiting the global physical interaction between the body parts stemming from the fluid circuit. The experimental results show that this robot exhibits adaptive locomotion without relying on any hierarchical structure. The results obtained are expected to shed new light on design scheme for autonomous decentralized control systems. keywords: Biologically-inspired robot, fluid circuit, decentralized control, sensory-motor coordination, modular robot

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Taming Large Degrees of Freedom ÂA Case Study with an Amoeboid RobotÂ

Animals exhibit astoundingly adaptive and supple locomotion under real world constraints. In order to endow robots with similar capabilities, we must implement large degrees of freedom, equivalent to animals, into the robots’ bodies. For taming large degrees of freedom, the concept of autonomous decentralized control plays a pivotal role. However, a systematic way of designing such autonomous d...

متن کامل

Ethology and rheology of an amoeboid cell

We will show that ability of information processing in an amoeboid organism is higher than we had thought. The model organism is the plasmodium of Physarum polycephalum (true slime mold), which is a large aggregate of protoplasm with many nuclei. The organism found the optimal path when it obtained the multiple locations of food. A simple mathematical model for the path finding was proposed in ...

متن کامل

Emergence of Self-Organized Amoeboid Movement in a Multi-Agent Approximation of Physarum polycephalum

The giant single-celled slime mould Physarum polycephalum exhibits complex morphological adaptation and amoeboid movement as it forages for food and may be seen as a minimal example of complex robotic behaviour. Swarm computation has previously been used to explore how spatio-temporal complexity can emerge from, and be distributed within, simple component parts and their interactions. Using a p...

متن کامل

Biologically Inspired Optimization of Building District Heating Networks

In this paper we show that a biologically inspired modelcan be successfully applied to problems of building optimal districtheating network. The model is based on physiological observations of the true slime mold Physarumpolycephalum, but can also be used for path-finding in the complicated networks of mazes and road maps. A strategy of optimally building heating distribution network was guided...

متن کامل

A Navigation Algorithm for Swarm Robotics Inspired by Slime Mold Aggregation

This article presents a novel bio-inspired navigation principle for swarm robotics that is based on a technique of signal propagation that was inspired by slime mold. We evaluated this strategy in a variety of simulation experiments that simulates a collective cleaning scenario. This scenario includes several sub-tasks like exploration, information propagation and path finding. Using the slime ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Advanced Robotics

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2012